Respuesta :
At first we should know that:
 " The sum of the lengths of two sides of a triangle must be grater
than the length of the length of the third side "
which mean:
For a triangle ABC :
                              Â
AB + BC > AC
                         Â
&Â Â AB + AC > BC
                         Â
&Â Â AC + BC > AB
Applying the theorem to the problem:
we have AB = 12 cm. Â
and BC = 10 cm.
For option (a): if AC = 2 cm. ⇒⇒⇒ Â
AC + BC = 10 + 2 = 12 = AB
                       Â
So option (a)  ⇒ could not be the length of AC
For option (b): if AC = 3 cm. ⇒⇒⇒ Â
AB + BC = 12 + 10 = 22 > AC
                                              Â
   &  AB + AC = 12 + 3  = 15 > BC
                       Â
          Â
   &  AC + BC = 3 + 10 = 13 >
AB
                       Â
So option (b)  ⇒ could be the length of AC
For option (c): if AC = 8 cm. ⇒⇒⇒ Â
AB + BC = 12 + 10 = 22 > AC
                                              Â
   &  AB + AC = 12 + 8  = 20 > BC
                       Â
          Â
   &  AC + BC = 8 + 10 = 18 >
AB
                       Â
So option (c)  ⇒ could be the length of AC
For option (d): if AC = 16 cm. ⇒⇒⇒ Â
AB + BC = 12 + 10 = 22 > AC
                                              Â
   &  AB + AC = 12 + 16 = 28  > BC
                       Â
          Â
   &  AC + BC = 16 + 10 = 26  > AB
                       Â
So option (d)  ⇒ could be the length of AC
For option (e): if AC = 22 cm. ⇒⇒⇒ Â
AB + BC = 10 + 12 = 22 = AC
                       Â
So option (e)  ⇒ could not be the length of AC
For option (f): if AC = 25 cm. ⇒⇒⇒ Â
AB + BC = 12 + 10 = 22 < AC
                       Â
So option (f)  ⇒ could not be the length of AC
Â
The measurements that could be the length of AC are 3 , 8 , 16
i.e.: options (b),(c) and (d)