Respuesta :
Answer:
Step-by-step explanation:
Consider the sets A and B
(A β (A β© B)) β© (B β (A β© B))
= (A β© (A β© B)c) β© (B β© (A β© B)c) by the set difference law
= (A β© (Ac β© B)c) β© (B β© (Ac β© B)c) by De Morgan's law
= {(A β© Ac) βͺ (A β© Bc)} β© {(B β© Ac) βͺ (B β© Bc)} by the distributive law
= {β βͺ (A β© Bc)} β© {(B β© Ac) βͺ β } by complementation
= {A β© Bc} β© {B β© Ac} by identity law
= (A β© Ac) β© (B β© Ac) by the associative law
= β β© β by complementation
= β by the universal bound law
Therefore, Β (A β (A β© B)) β© (B β (A β© B)) = β
Answer:
Considere los conjuntos A y B
(A β (A β© B)) β© (B β (A β© B))
= (A β© (A β© B)c) β© (B β© (A β© B)c) por la ley de diferencia establecida
= (A β© (Ac β© B)c) β© (B β© (Ac β© B)c) por la ley de De Morgan
= {(A β© Ac) βͺ (A β© Bc)} β© {(B β© Ac) βͺ (B β© Bc)} por la ley distributiva
= {β βͺ (A β© Bc)} β© {(B β© Ac) βͺ β } complementando
= {A β© Bc} β© {B β© Ac} por ley de identidad
= (A β© Ac) β© (B β© Ac) por la ley asociativa
= β β© β complementando
= β por la ley universal consolidada
Step-by-step explanation: